** founf on a different forums thought it might free up alot of questions and guide new gear heads**
I put this guide together because I'm tired of seeing the SAME threads over and over of simple questions that can be answered in one simple post like this one. This is just a general guide. Feel free to comment with something if you feel it should be added to this guide. Thank-you. Also, please be aware that this is on an intermediate level, and in my opinion anyone reading this guide can perform all of the steps outlined. I left out things like how to hone cylinders, install bearings, pistons, rings, valve seals, etc. Because honestly, I don't want some of the idiots on this board attempting it based on my techniques, screwing up there motor because they are idiots, and then ruining my credibility.
Let's start. Now, in my opinion, there are a few NECESSARY things to do/parts to buy when building a "reliable" lsvtec build:
LS ARP rod bolts
GSR ARP head studs
New OEM LS (90-01) B18a/b head gasket
New OEM/ACL LS bearings
Shotpeen LS rods
New hastings/OEM LS piston rings
New OEM valve seals
Hone cylinders
New GSR/ITR water pump (P72)
New GSR/ITR timing belt (P72)
New GSR/ITR/96+ Bseries oil pump (P72)
Magnetic oil drain plug (important for break in)
New oem NGK V-power b16 spark plugs (stock compression) OR NGK V-power BKR7E spark plugs for 11.5:1+ compression.
Do the above, and your motor will reward you with reliability.
Other things to consider:
A 2.5 inch header, cat, exhaust piping, and muffler.
Hondata/Passwordjdm intake manifold gasket
Adjustable cam gears (even for stock cams, because lsvtec timing will ALWAYS be slightly off)
Adjustable Fuel Pressure regulator
Want to make 200 whp with your lsvtec?
P30(SIR2 B16)/PCT(CTR) pistons or forged 11.5:1+ pistons
Higher lift/longer duration cams (read below for cams)
Stiffer valve springs (read below for valve springs)
Tuning
Want to make more than 200WHP?
Better intake manifold (ITR, AEBS, Skunk2, JG, Ported ITR)
Port/Polish head
Better header (ANR, RMF, SMSP, Rage, etc.)
310cc injectors (at a minimum)
Then go and tune the shit out of it!
Now, let's get started...First, we can't get started without the Assembly lube, RTV, and 30W ND oil (to break in the rings.), and coolant. It will be good to have handy a 10, 12, 14, 17, and 19mm box wrenches as well as shallow and deep sockets in the same sizes. It would also be good if you could have those same sockets in both 3/8 drive and 1/2 drive (but it is not necessary). Pick up a 3/8 drive, and 1/2 drive 6 inch extension, as well as the equivalent sized socket wrenches. You will also need a ft/lbs torque wrench as well as a inch pounds torque wrench. Pick up a deep 5/8, 16mm or spark plug socket. Forgive me if i'm forgetting any tools, but these are the main ones. The only additional tools required for working on any other part of the car including installing the engine are 8mm's, 32mm's (axle nuts), and a couple flat heads and screwdrivers. You can get away with just those tools, any additional specialty tools is just preference, like ball joint seperators, etc.
The head. Let's first start off with your choices. There are B16 heads, ITR heads, and GSR heads. IMO, it is never worth buying an ITR head, if you plan on upgrading the springs/retainers/cams anyway. They are amazing heads from the factory, but B16/GSR heads can be had and built for far less. ITR/B16 heads are built from the same exact casts (PR3), while GSR heads are built from a different cast (P72) which is why the intake manifold bolt pattern is different. ITR heads have a slight hand port job on the intake side from the factory. They also have stiffer dual valve springs, as well as slightly higher lift/longer duration cams. If you want to make more than 200whp with your lsvtec build, you are going to need better cams and springs/retainers anyway...so do you see why it's just not worth the $1000-1200 price tag on used ITR heads? The question you SHOULD ask is, should you get a GSR or B16 head? Tough question. Here's the deal...B16 heads share the same bolt pattern as ITR's for the intake manifold. They are easier to find aftermarket intake manifolds for than GSR heads. However, GSR heads have a distinct advantage over B16/ITR heads. Although it has slightly smaller combustion chambers that raise compression is an advantage, it is the reason why it raises compression, that is the REAL advantage. You see, GSR heads employ small flat surfaces on the edges of the combustion chamber called "quench" pads. This does raise compression, but the real advantage is this design's ability to ward off detonation. So, in my opinion, I would look for a GSR head not for the higher compression it will give you, but for the ability to run higher compression with it, safely.
Now, if you have the money, and you want to build a powerful setup, I highly recommend sending your head out to one of the proven head porting shops out there like RLZ, portflow, DonF @ DFE, or Alaniz. I would also go ahead and at the very minimum pick up new OEM valve seals, if not aftermarket. These are equivalent to piston rings for the head, as they seal oil out of the combustion chamber. Don't worry though, Honda valve seals are still fine. Valve springs and retainers are also a mandatory upgrade if you ever plan on making power passed 8k with your lsvtec w/ upgraded cams. Some great companies are portflow, supertech, omni, rocket motorsports, RLZ, Import Builders, JG, etc. I went ahead and milled the head a little just to freshen the surface. It is by no means necessary. But, keep in mind that if you do it, your cam timing may be slightly affected, as well as your piston to valve clearance and compression ratio. Be careful how much you take off. Here are pics of my '00 B16 head fresh from the machine shop:
vtec head preparation. First, you must remove the allen plug on the intake manifold passenger side of the head. Heating it up with a torch may ease in the removal of this plug, although I've never had to use heat, just muscle. Next, you must tap the head and install the 1/8 NPT pipe fitting included in your lsvtec kit you either purchased or assembled. Make sure to either teflon tape/paste it or use threadlocker, which ever you prefer. I use teflon tape myself. For the dowel pin holes, I used the two corner exhaust side head bolt holes. They fit perfect with the golden eagle lsvtec dowel pins.
Now for the block. The stock LS pistons are garbage, unless you plan on turboing this setup, get rid of them. Even in which case, I personally wouldn't boost more than 10 psi on the stock sleeves/pistons, and that's with extensive tuning. I suggest getting aftermarket forged pistons/rods, although it is by no means necessary in an all motor build. Stock cast honda pistons are more prone to detonation than aftermarket pistons. They have been used time and time again reliably. But reliability isn't anything more or less than the tuning that is done after the initial startup. As for the rings, use whichever you prefer. I swear by Hastings piston rings myself and I personally wouldn't use anything other than them or OEM honda rings. But, if you use forged pistons, use whichever rings they include or recommend. Everyone who is anyone will now agree, that it is MANDATORY that you install ARP rod bolts. LS rod bolts are the same exact rod bolts that come factory in sohc dseries motors. This is THE single point of failure on LS blocks. It's not the rods, or anything else, it's the rivet sized rod bolts. Upgrade to ARP rod bolts! Now for the rods, if you plan on staying with the stock rods, which is perfectly fine, it would be smart to shotpeen them. This will improve the tensile strength of the rod. Just a small piece of mind when you're at 9k. Some shops charge extra for this, some include it with there rebuilds...but either way, it's cheap so do it. You should also have your rod's journal's (big ends) resized when you install ARP rod bolts. Alot of people will say it's not necessary, but ARP recommends it. Pay the extra few bucks to have this done, again for peace of mind. ARP doesn't make any money off of this, so why do they recommend it? Because the extra torque placed on the rods using their rod bolts has the tendency to "warp" the big end of the rods. It's not a difference you can see with the naked eye, but it's there. As for bearings, go with whatever you prefer. Some swear by OEM honda, but if ACL's are with standards, there's nothing wrong with them. ACL is better if they are within clearance specs because they offer a trimetal design like oem GSR/ITR/CTR bearings are. I would also go and get the block balanced. Again, not mandatory, but it helps in the high revs. Alot of people like to use girdles. It makes sense right? B16's and B18C's use them, and honda implemented them for a reason right? I agree totally. But I'm a fan of "keep it simple". There are plenty of people running ungirdled blocks revving to 9k or higher. I don't use one. So, you decide. There are about a million other things you can do to the block. Don't buy into gimmicks, and keep it simple. Simple = less shit to go wrong. If you are unsure of all the options you have with building a block, talk to a well known engine builder. There are plently of them on honda-tech.com. And, if you can get into a conversation with jeff over at importbuilders.com, he can clear alot of things up for you. Now, here are pics of the block from the machine shop (P30 pistons and rings installed, cylinders honed, shotpeened LS rods, arp rod bolts installed, rods resized, crank balanced, polished, and knife edged:
ARP head studs installation. Another near mandatory upgrade. The ones you need for this hybrid setup are the GSR/ITR studs/bolts. Do NOT use the B16 or B18a/b studs. They are the incorrect length. First and foremost, make SURE that the holes are clean and clear of debri. The best way to do this is to spray brake cleaner or intake/carb cleaner down the holes, and use compressed air to blow out the cleaner and debri. Make sure to cover up the cylinders so that crap doesn't get into them though. Make sure to lube up both sides of the studs w/ ARP moly lube (which is included with their bolts), or with 30w oil (Not 10w30, but solid 30w), if you bought them used. Tighten the ARP head studs all the way down with an allen wrench, then back them off about a 1/4 turn (ARP recommends they are hand tight, and this is equivalent). But, beware. When they say handtight, they do not mean tighten them down with your hand. This is just silly because you can't thread the studs all the way down by hand; they won't all be even. What they mean is, thread the studs all the way to the bottom, but do not have the bolts applying any pressure to the block (no torque). You can also use the double nut technique, which is just putting two nuts on the stud, and using a socket or box wrench to tighten the upper nut. This will turn the stud because the lower nut will hold the upper nut in place. This will ensure that they are all at equal height. Do NOT torque the studs INTO the block. This will negate the whole reason you are using studs instead of bolts in the first place. The advantage of studs is this...the block will be "pulling" down on the head, which is the opposite force of combustion, as opposed to the head "pulling" up on the block, in the same direction as combustion, which is what the stock head bolts do. The studs help create a better seal.
Next, I install the oil pan gasket and oil pump. It's simple; you just remove all the 10mm nuts from the oil pan. Now, remove the oil pump by removing the mounting bolts. Make sure to clean both the block and oil pan mating surfaces so that there will not be any leaks. Also, clean the oil pump mating surfaces. Use brake cleaner or intake cleaner for this. I also used this time to fully clean out the oil pan free of debris and oil with soapy water. Make sure it is completely dry before reinstalling it. At this time, you should also install your new oil pump. Now, the next step is not necessary, but most engine builders do this and I do it as well. You should prime the oil pump; and you do this by packing it with petroleum jelly on the inside of the pump gear. Now, spread a good layer of high temp RTV on the block and oil pump mating surfaces. Then, reinstall the oil pump and pick up tube, as well as the windage tray. Torque everything to spec. Slip on the oil pan gasket and then the oil pan. Install all the 10mm nuts to spec.
Water pump installation. It would be to your advantage if you went out and purchased an OEM ITR/GSR (P72) water pump. But, if you use this water pump, you must also use the ITR/GSR (P72) timing belt. If you use the LS water pump, use the LS timing belt. The P72 water pump has 22 teeth as opposed to the 19 teeth on the LS pump. This means the GSR pump spins slower at higher RPM's, and vise versa. You may think this is bad, but it is good, because at those higher RPM's with an LS water pump, you will theoretically be spinning the pump so fast, that it doesn't even push water; it just creates bubbles (cavitation). Get it? Ok, so take your water pump now and spread a bead of RTV in the gasket groove, and then slip in the gasket. Bolt up the water pump and torque down to specs. Tighten them down in a criss-cross pattern as you would lug nuts. Do not overtighten as you can warp the pump or crack it, possibly even strip the bolts. Bad.
Water pipe installation. Slip on the two rubber seals on both ends of the pipe. Slide one side of the pipe into the opposite side of the water pump. The other side gets bolted slipped in with the thermostat housing installation.
Thermostat housing installation. Slide the other end of the water pipe into the thermostat housing. Bolt the thermostat housing down with it's two 10mm bolts. Torque to specs.
Now time to install the fan switch, oil pressure switch, and knock sensor. This is self explanatory. Just tighten them down till they can't be tightened down anymore. As for the knock sensor, you need to tap the right hole of the upper alternator bracket, if you plan on running one. You must first drill the hole out with an 11mm drill bit or equivalent. The knock sensor is 12mm x 1.25, so that's what you have to tap the hole with. Grab the tap from your local hardware store. Tap the hole and screw in the knock sensor. This is completely optional. If you like check engine lights flashing on your dash, then skip this step. I however don't. Even though I installed it and have it wired in, I have it disabled through my software. This forces the computer to run in my manually created ignition maps. Don't disable the knock sensor unless you have experience with ignition tuning.
Breather box installation. 96+ LS blocks wont have this, which is why it is better to use the 90-95 LS blocks. Now think about it. Does it really matter how many miles the block you are using for this build has? No, because you are going with new rings/bearings/hone anyway right? But, use common sense for this. Get the cheapest 90-95 block you can find. If you are building a B20vtec however, you will have to buy one if you plan on running one. Z10 motorsports and Endyn both make nice kits for you. This is not mandatory, but I highly recommend it. If you don't have this breather box or an aftermarket one installed, your lsvtec motor will develop extremely high crankcase pressures, which is no good. Make sure the little rubber o ring is on the box, and pop it into the equally sized opening on the back of the block. Torque down the single bolt on the bottom till it is tight. Done.
![]()