Each cylinder features an independent, electronically controlled throttle body to ensure engine intake air takes the shortest and most efficient route. It features prioritized control logic functionality: an innovative system that estimates the intake air volume based on the throttle pedal angle, allowing it to calculate the appropriate fuel injection volume far more quickly than any conventional system. The result is an engine that responds incredibly quickly to even the smallest and subtlest inputs from the forged aluminum, floor-mounted throttle.

So successful was this low-friction program that the engine can rev from idle to its 9,000rpm redline in just six-tenths of a second – an inertia-free flexibility derived exclusively from the team’s race-borne engineering skills. This necessitated the need for a digital rev counter, since an analog system simply could not keep pace with the engine’s incredible ability to gain and lose revolutions.

The result is a powerplant like no other; one that instantly redefines the size and weight characteristics of ultra-high performance engines. While the LFA’s cutting-edge V10 is smaller than a traditional V8 engine and as light as a conventional V6 engine, it delivers undiluted supercar performance. At 9,000 rpm its pistons are moving at approximately 32 feet (25 meters) per second, making it one of the highest revving and most powerful engines ever unleashed in a production car. Despite its formidable performance, the exotic materials used in its construction and its incredibly high tolerance levels, the LFA’s powerplant meets the same reliability and refinement standards as any other Lexus powerplant.

The cylinder block is cast at the foundry that makes Toyota F1 engine blocks. This groundbreaking engine was developed in conjunction with Yamaha, the result of the collaborative structure that exists between Toyota Motor Corporation and the Japanese engineering specialist. This Yamaha-assisted development was controlled and managed by Toyota at each crucial stage to meet its exacting standards.

GEARBOX
• Lightning-quick Automated Sequential Gearbox (ASG) that always puts the driver in full control
• Six-speed ASG drives the rear wheels through a limited slip differential via torque tube for exceptional drivetrain integrity
• Unique paddle-shift feeling, with the choice of seven gearshift speeds
• Transaxle layout over the rear axle results in an ideal 48:52 weight distribution for exceptional cornering agility and high-speed controllability
• Ultra quick shifts – carried out in just 0.2 seconds – complemented by four driving modes – AUTO, SPORT, NORMAL and WET for exceptional versatility

The V10’s explosive performance is managed by an equally advanced transmission. The LFA’s specifically developed all-new, six-speed Automated Sequential Gearbox (ASG) drives the rear wheels through a torque-sensing Limited Slip Differential, and is mounted in transaxle layout over the rear axle to achieve an optimal, 48:52 weight distribution.

While many believe that a 50:50 weight distribution is the most desirable for a high-performance sportscar, the perfect weight ratio for any vehicle is one that will allow it to live up to its full dynamic potential. With this in mind, the LFA’s development engineers aimed for a 48:52 weight distribution, a balance that combines the controllability and straight-line stability of a front-engine rear-drive layout with the handling dynamism and cornering agility of a mid-engine rear-drive platform.

Operated by steering wheel column-mounted paddle shifters, the ASG transmission works hand-in- with the engine to help put the driver in full control even under the most extreme driving conditions. Fitted with micro-polished gears for precise gearshifts and to reduce gear whine, this intelligent transmission is engineered to execute incredibly quick gearshifts, and can upshift in just 0.2 seconds.

In addition to the traction-enhancing limited slip differential, the ASG transmission also features four driving modes – AUTO, SPORT, NORMAL and WET – actuated by a dash-mounted Mode dial. Featuring specific gearshift programming, each mode has its own engine and brake control logic systems, allowing the driver to select the mode best suited to under-tire conditions.

Gearshift speeds can be adjusted in seven stages – from approximately 0.2 seconds for intense track work to 1.0 second for smooth cruising – using a Shift Speed Selection dial, logically situated just below the Mode dial. In AUTO mode, the shift speed is fixed in the second speed stage for smooth and comfortable gear changes.

The LFA’s strong driver-centric focus is perfectly encapsulated by the operation of the paddle-shifters. As well as being fixed onto the steering column rather than the wheel itself so that the driver doesn’t have to hunt for them during cornering, the force necessary to operate the right-hand upshift paddle and left-hand downshift paddle is different. While the upshift requires the slightest flick of the fingers, the downshift paddle requires more effort to enhance the mechanical link between driver and transmission.

The incredibly quick-revving nature of the LFA’s V10 engine demanded a single ultra-light and responsive clutch, a move that effectively ruled out a double-clutch transmission. The engineers also felt the ASG transmission’s positive and direct shift quality – as opposed to the almost artificial smoothness of current double-clutch transmissions – significantly enhanced the driving experience, making the driver aware of machined parts working together in harmony when changing gears for a satisfying sense of mechanical engagement.

Engine and transmission are connected by a torque tube that unites the drivetrain to create a rigid and flex-free link between powerplant and transaxle – a crucial element in the LFA’s ultra-stiff chassis construction. Fitted with rubber insulators, this tube allows the engine mounts – two on either side of the block and the two transaxle mounts, – to be spaced further apart, minimizing unwanted powertrain movement.

This solid wide mounting system minimizes powertrain movement and counter torque reactions, giving the driver immediate control of torque at the drive wheels. These engine and transmission mounts were developed and tuned based on feedback gathered from the LFA after it competed in the gruelling Nürburgring 24 Hours race in 2008 and 2009.

SOUND
• The superb acoustics of the LFA’s V10 engine have been acoustically tuned to deliver a unique and Formula 1-inspired soundtrack
• Horizontally split intake surge tank mimics the acoustic chambers of wind and string instruments for a rich and resonant bass
• Tuned large diameter, equal-length exhaust manifolds run through dual exhaust pipes with a lightweight titanium dual-stage main silencer
• Motorsport-inspired main silencer features valve-actuation and lightweight titanium construction
• Three acoustically optimised sound channels ensure the LFA’s cabin is filled with the engine’s sonorous intake and exhaust soundtracks.

“The Lexus LFA is a car with relentless power delivery and an accompanying exhaust note to give you goose bumps,” enthuses its chief engineer Haruhiko Tanahashi. He and his team have enhanced and fine tuned the acoustics of the LFA’s ground-breaking V10 powerplant to deliver an awe-inspiring soundtrack – from idle note to red-line wail - for those both inside and outside of the cabin.

The LFA’s acoustic team studied the unmistakable soundtrack generated by a Formula 1 car at maximum revs. By emphasising the secondary combustion frequency of the LFA’s engine and then introducing primary, secondary and tertiary firing harmonics, Tanahashi and his team created a signature exhaust note unlike that of any other road car.

This incredible soundtrack that significantly enhances the sensation of acceleration and speed was only made possible by meticulously tuning the LFA’s multi-stage exhaust system. The left and right banks of the engine feature separate, equal-length, large diameter exhaust manifolds that not only enhance high-rev torque levels but also create a crisp and harmonious sound quality. After exiting the catalytic converters, the separate left and right exhausts flow through a smaller silencer box and then into the main multi-stage silencer housed behind the rear transaxle gearbox.

The main silencer features lightweight titanium construction, and employs a valve-actuated, dual-stage structure that channels exhaust flow according to engine speed. At 3,000 rpm and below, the exhaust valve remains closed to route the exhaust through multiple chambers for an unobtrusive exhaust note. Above this threshold, the valve opens, letting the exhaust bypass the chambers, flow into a single resonance chamber and exit directly through the LFA’s strikingly stacked trio of exhaust outlets.

As well as tuning the exhaust note, the V10’s induction system was also modified to complement the engine’s acoustic qualities. The powerplant’s uniquely formed horizontally split resin surge tank mimics the acoustic chambers of wind and string instruments. In addition, the V10’s primary air intake port is fashioned from porous duct material to generate bass to mid-range tones.

The engine’s induction and exhaust soundtrack are carefully channelled into the LFA’s cabin. The main sound channel that pipes in the engine’s induction notes runs from the surge tank through into the cabin below the main dash panel. This is complemented by two further sound channels - the upper cowl opening and the lower reflector.

The upper cowl opening, positioned at the top of the dash structure, is mainly responsible for piping mid- to high-range tones directly into the cockpit, while the lower reflector at the base of the cabin envelopes the LFA’s occupants in rich and resonant engine notes. Along with the primary sound channel, these two acoustic enhancers ensure the driver sits at the center of what the LFA team call the 3D Surround Sound Concept’ – a stirring soundscape that also acts as a constant aural reminder of the engine’s performance.


DYNAMICS

BALANCE
• The LFA delivers superb dynamic balance in every situation, allowing the driver to fully exploit to V10 engine’s incredible performance
• Mid-front engine mounting with a rear transaxle layout delivers the ideal 48:52 front-to-rear weight distribution vital for optimal dynamic balance
• Front and rear aluminum subframes are mounted on to an advanced Carbon Fiber Reinforced Plastic (CFRP) cabin section
• All major ancillary components are weight-optimised and located within the wheelbase, including the saddle-shaped 73-liter fuel tank and boot-mounted battery

“With the LFA it is always the driver that takes the lead,” says chief engineer Haruhiko Tanahashi, “and the vehicle follows.” Before embarking on the LFA program, Tanahashi and his development team were acutely aware that the car’s fundamental architecture would determine its dynamic capability. Only a car with perfect dynamic balance would allow Tanahashi to achieve his goal of developing a supercar worthy of the Lexus badge.

The dynamic balance of the car being paramount, Tanahashi opted for a powertrain architecture, which combined a mid-front engine mounting with a rear transaxle. Not only would this classic layout deliver the ideal 48:52 front-to-rear weight distribution vital for an ultra-high performance vehicle.

Just as salient as the positioning of these elements was the need to keep the LFA’s overall weight to an absolute minimum. Tanahashi and his team opted for front and rear aluminum subframes mounted on to an advanced Carbon Fiber Reinforced Plastic (CFRP) cabin section. As well delivering an estimated 220 lb (100kg) weight saving over an aluminum construction, the CFRP tub and bodywork also created an incredibly strong and impact-resistant structure for heightened safety.

Wherever possible, every key component was installed within the wheelbase and located as low possible. The 19.3 gallon (73-liter) fuel tank is saddle-shaped to straddle the central tunnel and collars the rear-mounted gearbox. Similarly, the windscreen washer tank is located next to the fuel tank. The lightweight aluminum brake callipers are positioned towards the vehicle’s center of gravity, helping to further lower the moment of inertia, while the discs themselves are fashioned from low-weight Carbon Ceramic Material (CCM), saving a full 44 lb (20kg) (11 lb (5kg) per wheel) over traditional cast-iron discs.

The LFA’s battery is located directly over the back axle, while the rear-mounted radiators and their electric fans are also mounted behind the transaxle to achieve ideal weight distribution, a balance helped by locating the screen washer bottle and Electric Parking Brake (EPB) unit in the rear of the car. Moreover, stacking the torque tube above rather than alongside the exhaust pipes has created a narrower central transmission tunnel, in turn allowing the driver and passenger seats to be positioned lower and closer to the center of the car for enhanced weight distribution.

BRAKING
• The LFA’s development team switched from cast-iron to Carbon Ceramic Material (CCM) brake discs for the ultimate in braking performance
• Two-piece CCM brake discs deliver exceptional fade-free braking performance and a longer life than conventional steel
• Large 15.4 in (390mm) diameter front discs are gripped by six-piston, aluminum opposed monoblock callipers; the 14.2 in (360mm) diameter rear discs feature four-piston aluminum opposed monoblock callipers
• Highly rigid monoblock callipers fitted with differential pistons bore sizes that push the brake pads against the rotors in a progressive pattern
• A floating disc construction, with 10 bushings connecting the center hub to the disc effectively negates the results of high-temperature disc expansion

Appropriate to the immense power of the high-revving V10 engine, chief engineer Haruhiko Tanahashi and his team have equipped the LFA with one of the most advanced and powerful braking systems fitted to a production car. “In order to go, you have to be able to stop,” explains Tanahashi, “and we have engineered the LFA’s brake system to give any driver the confidence to explore speeds in the realms of 202 mph (325km/h).”

While the LFA development car that competed in the 2008 and 2009 Nürburgring 24 Hour races used conventional iron brake discs, Tanahashi initiated a switch to advanced Carbon Ceramic Material (CCM) brake discs. These offer a vital weight saving – each CCM disc is 11 lb (5kg) lighter than the previous iron discs – that significantly reduces unsprung weight to the benefit of steering precision and dynamic agility. Compared to conventional iron brake discs, CCM discs also deliver exceptional fade-free braking for confidence-inspiring performance under even the most demanding of driving conditions.